
modelhub Documentation
Release 0.4.0

Ahmed Hosny, Michael Schwier

Jul 01, 2020

Contents

1 Contents: 3
1.1 Quick Start . 3
1.2 Overview . 4
1.3 Contribute Your Model to Modelhub . 5
1.4 Modelhub IO Configuration . 9
1.5 Modelhub APIs . 10
1.6 Modelhub Library . 13

2 Indices and tables 19

Python Module Index 21

Index 23

i

ii

modelhub Documentation, Release 0.4.0

Crowdsourced through contributions by the scientific research community, modelhub is a repository of deep learning
models pretrained for a wide variety of medical applications. Modelhub highlights recent trends in deep learning
applications, enables transfer learning approaches and promotes reproducible science.

Note: This documentation should contain all essential technical information about the Modelhub project and how to
contribute models. It is, however, still work-in-progress, so possibly you need to be a little patient and persistent. If
you find anything unclear, need help, or have suggestions, please feel free to contact us at “info at modelhub.ai”

Contents 1

modelhub Documentation, Release 0.4.0

2 Contents

CHAPTER 1

Contents:

1.1 Quick Start

The most accessible way to experience modelhub is via modelhub.ai. There you can explore the model collection, try
them online, and find instructions on how to run models locally.

But since you are here, follow these steps to get modelhub running on your local computer:

1. Install Docker (if not already installed)

Follow the official Docker instructions to install Docker CE. Docker is required to run models. GPU Support:
If you want to run models that require GPU acceleration, please use Docker version >= 19.03 and follow the
installation instructions for the Nvidia-Docker Toolkit here.

2. Install Python 2.7 or 3.6 (or higher) (if not already installed)

Download and install Python from the official Python page. Modelhub requires Python 2.7 or Python 3.6 (or
higher).

3. Install the modelhub-ai package

Install the modelhub-ai package from PyPi using pip: pip install modelhub-ai.

4. Run a model using start.py

Open a terminal and navigate to a folder you want to work in. For running models, write access is required in
the current folder.

Execute modelhub-run squeezenet in the terminal to run the squeezenet model from the modelhub
collection. This will download all required model files (only if they do not exist yet) and start the model. Follow
the instructions given on the terminal to access the web interface to explore the model.

Replace squeezenet by any other model name in the collection to start a different model. To see a list of all
available models execute modelhub-list or modelhub -l.

You can also access a jupyter notebook that allows you to experiment with a model by starting a model with
the “-e” option, e.g. modelhub-run squeezenet -e. Follow the instructions on the terminal to open the
notebook.

3

http://www.modelhub.ai
https://docs.docker.com/install/
https://github.com/NVIDIA/nvidia-docker#quickstart
https://www.python.org/

modelhub Documentation, Release 0.4.0

See additional starting options by executing modelhub-run -h.

1.2 Overview

1.2.1 Framework

Modelhub provides a framework into which contributors can plug-in their model, and model specific pre- and post-
processing code. The framework provides a standalone runtime environment, convience functionality (e.g. image
loading and conversion), programming interfaces to access the model, and a user friendly web-interface to try a model.
See the following figure for an overview of the architecture.

The contrib_src contains the model specific code and data, all other functionality is provided by the framework. The
framework and model specific code run inside of a Docker container, which contains all runtime dependencies. The
resulting package constitutes a standalone unit that can be easily deployed, executed on different platforms (Linux,
Windows, Mac), and integrated into existing applications via the generic API.

1.2.2 Repository Structure

The whole modelhub infrastructure is a combination of several repositories under https://github.com/modelhub-ai,
comprising the following:

• modelhub Index/Registry of all models

Contains

– a list (index/registry) of all models available via modelhub

– json schema for validating model config files

– python script to conveniently start any model which is registered in the modelhub index

• modelhub-app Generic web frontend for a model

Web app for easy interaction with a model provides

– relevant info about model (architecture, I/O, purpose)

– info about accompanying publication (optional)

– GUI interface to run/test the model

The web app is generic and works on top of every model without modifications.

• modelhub-engine Backend library, framework, and API

Library and common framework on which model contributors must base their model contribution. The frame-
work handles/provides -data I/O -data conversion to/from numpy (typical data format used in deep learning
libraries) -generic API for accessing and working with the model -“slots” for preprocessing, postprocessing,
and inference, which have to be populated by the contributor with the model specific code

• model-template Template structure for building modelhub compatible models

Defines the file and directory structure required to build a model that can be integrated into modelhub. Contrib-
utors should clone this repository and build fill in the template with their model specific code/info.

• <model name> A model implementation available via modelhub

Several models are directly hosted under modelhub.ai. Each model has its own repository. The structure of the
repository follows the model-template. However, models don’t need to be hosted under modelhub.ai but can

4 Chapter 1. Contents:

https://github.com/modelhub-ai

modelhub Documentation, Release 0.4.0

be any github repository. To be integrated in and available via modelhub, they only have to be listed in the
modelhub index/registry.

• modelhub-ai.github.io Modelhub webpage

Source code for the modelhub.ai webpage

1.3 Contribute Your Model to Modelhub

The following figure gives an overview of the necessary steps to package your model with the Modelhub framework
and eventually contributing it to the Modelhub collection. Read further for detailed explanations of all steps.

HINT Take a look at an already integrated model to understand how it looks when finished (AlexNet is a good and
simple example. If you have a more complex model with more than one input for a single inference, have a look at
one of the BraTS models, e.g. lfb-rwth).

1.3.1 Prerequisites

To package a model with our framework you need to have the following prerequisites installed:

• Python 2.7 or Python 3.6 (or higher)

• Docker

• Clone of the modelhub-engine repository (git clone https://github.com/modelhub-ai/
modelhub-engine.git)

• For GPU support, you need Docker version >= 19.03 and follow the instructions here.

1.3.2 1. Prepare Docker image

1. Write a dockerfile preparing/installing all third party dependencies your model needs (e.g. the deep learning
library you are using). Use the ubuntu:16.04 Docker image as base. If you want to use CUDA and GPU
acceleration, you can also use one of the nvidia/cuda images as base.

You can find examples of dockerfiles for DL environments in the model repositories of modelhub-ai on github
(e.g. for squeezenet).

2. Build the docker image.

3. Adapt the Dockerfile_modelhub located in the modelhub-engine repository to use your docker image as base
(i.e. change the FROM XXXXXXXX line to FROM <your docker image>). No other changes should be
necessary.

4. Build the image from the modified Dockerfile_modelhub. This will include the modelhub engine into your
docker. Make sure to build it from within the modelhub-engine repository so it finds the modelhub framework
which it will include in the Docker.

5. Push the image from the previous step to DockerHub (required if you want to publish your model on Modelhub,
so the image can be found when starting a model for the first time. If you don’t plan to publish on Modelhub,
this step is optional).

• NOTE We are planning to provide a few pre-built Docker images for the most common deep learning frame-
works, so you do not have to build them yourself. For now we only have a small set. You can find the ex-
isting pre-build images on DockerHub - use the ones that end with ‘-modelhub’ (the ones that don’t end with
‘-modelhub’ have only the pure DL environment without the modelhub framework on top.

1.3. Contribute Your Model to Modelhub 5

http://modelhub.ai/
https://github.com/modelhub-ai/AlexNet
https://github.com/modelhub-ai/lfb-rwth
https://docs.docker.com/install/
https://github.com/modelhub-ai/modelhub-engine.git
https://github.com/NVIDIA/nvidia-docker#quickstart
https://github.com/modelhub-ai
https://github.com/modelhub-ai/squeezenet/blob/master/dockerfiles/caffe2
https://github.com/modelhub-ai/modelhub-engine/blob/master/Dockerfile_modelhub
https://hub.docker.com/
https://hub.docker.com/u/modelhub/

modelhub Documentation, Release 0.4.0

If the DL environment, the exact version of the DL environment, or third party dependencies you require are not
available in the pre-build dockers, you have to build it yourself, following the above steps.

1.3.3 2. Prepare your model based on the modelhub template

1. Fork the model template.

2. Change the name of your model-template fork to your model’s name. For this open your fork on GitHub, go to
Settings, change the Repository name, and press Rename.

3. Clone your renamed fork to your local computer and open the cloned folder.

4. Populate the configuration file contrib_src/model/config.json with the relevant information about your model.
Please refer to the schema for allowed values and structure.

Version 0.4 and up breaks the compatibility with older versions of the schema, please validate your configuration
file against the current schema if you are submitting a new model. Old models are still compatible anddon’t
need to be changed unless you are updating the modelhub-engine version of the Docker image. For single-input
models, assign the key "single" to your input as in the schema above. HINT For more details on how to set
up your model for various input scenarios and implement your own ImageLoader class, see the IO Configuration
documentation.

5. Place your pre-trained model file(s) into the contrib_src/model/ folder.

6. (optional) Place some sample data into the contrib_src/sample_data/ folder. This is not mandatory but highly
recommended, so users can try your model directly.

7. Open contrib_src/inference.py and replace the model initialization and inference with your model specific code.
The template example shows how to integrate models in ONNX format and running them in caffe2. If you are
using a different model format and/or backend you have to change this.

There are only two lines you have to modify. In the __init__ function change the following line, which loads
the model:

load the DL model (change this if you are not using ONNX)
self._model = onnx.load('model/model.onnx')

If your model receives more than one file as input, the input argument of infer is a dictionary matching
the input schema specified in config.json. You would then need to pass each individual input through the
preprocessing and to your inference function. For example, accessing the input image_pose would look like
this: input["image_pose"]["fileurl"].

In the infer function change the following line, which runs the model prediction on the input data:

Run inference with caffe2 (change this if you are using a different DL
→˓framework)
results = caffe2.python.onnx.backend.run_model(self._model, [inputAsNpArr])

Note Feel free to add functions to the Model class as needed to structure your model’s initialization and execution
code. But make sure to keep the pre- and post-processing of the input data and prediction results (done by the
ImageProcessor) as they are. In the next step you will implement the ImageProcessor.

8. Open contrib_src/processing.py to implement the ImageProcessor class. The ImageProcessor inherits from
ImageProcessorBase, which already has most of the required data I/O processing implemented. Just your model
specific pre- and post-processing has to be implemented, to make the ImageProcessor work. There are two pre-
processing functions and one post-processing function to be filled in. We’ll go through each of these functions
individually:

6 Chapter 1. Contents:

https://github.com/modelhub-ai/model-template
https://github.com/modelhub-ai/modelhub/blob/master/config_schema.json
https://modelhub.readthedocs.io/en/latest/modelio.html
https://modelhub.readthedocs.io/en/latest/modelio.html

modelhub Documentation, Release 0.4.0

1. _preprocessBeforeConversionToNumpy(self, image)

The ImageProcessorBase takes care of loading the input image and then calls this function to let you
perform pre-processing on the image. The image comming into this function is either a PIL or a SimpleITK
object. So _preprocessBeforeConversionToNumpy gives you the option to perform pre-processing using
PIL or SimpleITK, which might be more convenient than performing pre-processing on the image in
numpy format (see next step). If you decide to implement pre-porcessing here, you should implement it
for both, PIL and SimpleITK objects. Make sure this function returns the same type of object as it received
(PIL in => PIL out, SimpleITK in => SimpleITK out).

You do not have to implement this. You can delete this function and implement all your pre-processing
using the image converted to numpy (see next step).

2. _preprocessAfterConversionToNumpy(self, npArr)

After the image has passed through the previous function, it is automatically converted to a numpy array
and then passed into this function. Here you must implement all additional pre-processing and numpy
re-formating necessary for your model to perform inference on the numpy array. The numpy array re-
turned by this function should have the right input format for your model (the output of this function
is exactly what is returned by self._imageProcessor.loadAndPreprocess(input) in con-
trib_src/inference.py).

3. computeOutput(self, inferenceResults)

This function receives the direct output of your model’s inference. Here you must implement all post-
processing required to prepare the output in a format that is supported by Modelhub.

You can either output a list of dictionaries, where each dictionary has a “label” element, giving the name
of a class, and a “probability” element, giving the probability of that class. For example:

result = []
for i in range (len(inferenceResults)):

obj = {'label': 'Class ' + str(i),
'probability': float(inferenceResults[i])}

result.append(obj)

For this you have to specifiy the output type “labellist” in your model’s _config.json.

Or you can output a numpy array. The output type specified in model’s config.json will help users (and
Modelhub) to interpret the meaning result array:

9. Edit init/init.json and add the id of your Docker, so when starting your model, Modelhub knows which Docker
to use (and download from DockerHub).

Optionally also list any additional files that are hosted externally (i.e. not in your model’s GitHub repository).
Specify origin and the destination within your model’s folder structure. This is particularly useful for pre-trained
model files, since they can easily be larger than the maximum file size allowed in a GitHub repository.

When starting a model, Modelhub will first download the model’s repository, then download any external files,
and then start the Docker specified in this init file.

10. Add your licenses for the model (i.e. everything in the repsoitory except the sample data) and the license for the
sample data to contrib_src/license/model and contrib_src/license/sample_data respectively.

If you want to publish your model via Modelhub, make sure the licenses allow us to use your code, model, and
sample data (most of the popular open source licenses should be fine, for proprietary licenses you might need to
give Modelhub and its users explicit permission).

11. (optional) Customize example code in contrib_src/sandbox.ipynb. This jupyter notebook is supposed to show-
case how to use your model and interpret the output from python. The standard example code in this notebook
is very basic and generic. Usually it is much more informative to a user of your model if the example code is
tailored to your model.

1.3. Contribute Your Model to Modelhub 7

https://pillow.readthedocs.io/en/latest/
http://www.simpleitk.org/

modelhub Documentation, Release 0.4.0

You can access and run the Sandbox notebook by starting your model via python start.py
YOUR_MODEL_FOLDER_NAME -e. For this, copy start.py from the modelhub repository to the parent folder
of your model folder.

12. It is good practice to include the Dockerfiles your used to build the Docker for your model so other users
can comprehend what the Docker contains. Create a folder dockerfiles/ in your local model clone (next to
contrib_src/ and init/) and copy the files from steps 1.1. and 1.3. into this folder.

1.3.4 3. Test your model

1. Manually check if your model works.

1. Copy start.py from the modelhub repository to the parent folder of your model folder.

2. Run python start.py YOUR_MODEL_FOLDER_NAME and check if the web app for your model
looks and works as expected. TODO: Add info on how to use the web app, because the command just
starts the REST API, which the web frontend is accessing. NOTE If your code uses CUDA on a GPU,
you have to add the -g flag to start.py to enforce the use of the GPU version of Docker. This is only
required for testing, once your model is added to the index, the right mode (GPU or CPU) is automatically
queried. Run python start.py -h for more info.

3. Run python start.py YOUR_MODEL_FOLDER_NAME -e and check if the jupyter notebook con-
trib_src/sandbox.ipynb works as expected.

2. Run automatic integration test. This test will perform a few sanity checks to verify that all the basics seem to be
working properly. However, passing this test does not mean your model performs correctly (hence the manual
checks).

1. Copy test_integration.py from the modelhub repository to the parent folder of your model folder.

2. Run python test_integration.py YOUR_MODEL_FOLDER_NAME. If all tests pass you are
good to publish.

On some platforms and Docker daemon versions communication to the model’s Docker con-
tainer might fail if the Docker is started implicitly by the integration test. If you get ob-
scure errors during test, try starting your model idependently in a different terminal via python
start.py YOUR_MODEL_FOLDER_NAME and running the test with the “-m” option: python
test_integration.py YOUR_MODEL_FOLDER_NAME -m.

If your model needs particularly long to start up, you need to tell the integration test how long to wait
before attempting to communicate with the model. Use the “-t” option.

Check out the documentation of the integration test by calling python test_integration.py -h

1.3.5 4. Publish

1. git clone https://github.com/modelhub-ai/modelhub.git (or update if you cloned al-
ready).

2. Add your model to the model index list models.json. If your model needs a GPU to run, add "gpu" : true
to the parameters for your model. This tells the start script to run the model with GPU acceleration.

3. Send us a pull request.

8 Chapter 1. Contents:

https://github.com/modelhub-ai/modelhub
https://github.com/modelhub-ai/modelhub
https://github.com/modelhub-ai/modelhub

modelhub Documentation, Release 0.4.0

1.4 Modelhub IO Configuration

1.4.1 Input Configuration for Single Inputs

As a User

If the model only requires a single image or other type of file for inference, you can simply pass a URL or a path
to a local file to the API. For example, you can detect objects using YOLO-v3 by running python start.py
yolo-v3 and then use the API like this:

http://localhost:80/api/predict?fileurl=http://example.org/cutedogsandcats.jpg

The API then returns the prediction in the specified format. For a thorough description of the API, have a look at its
documentation.

As a Collaborator submitting a new Model

For single inputs, please create a configuration for your model according to the example configuration. It is important
that you keep the key "single" in the config, as the API uses this for accessing the dimension constraints when
loading an image. Populate the rest of the configuration file as stated in the contribution guide and the schema. Validate
your config file against our config schema with a JSON validator, e.g. this one. Take care to choose the right MIME
type for your input, this format will be checked by the API when users call the predict function and load a file. We
support a few extra MIME types in addition to the standard MIME types:

If you need other types not supported in the standard MIME types and by our extension, please open an issue on
Github.

1.4.2 Input Configuration for Multiple Inputs

As a User

When you use a model that needs more than a single input file for a prediction, you have to pass a JSON file with all
the inputs needed for that model. You can have a look at an example here. The important points to keep in mind are:

• There has to be a format key with "application/json" so that the API can handle the file

• Each of the other keys describes one input and has to have a format (see the MIME types above) and a
fileurl

The fileurl can contain a path to a local file (which has to be accessible by the Docker container running the model)
or can contain a URL to a file on the web. The REST API can handle both and a mixture of local and web links while
the Python API can only access local paths. Passing an input file to the REST API would then look like this:

http://localhost:80/api/predict?fileurl=http://example.org/fourimagesofdogs.json

For a thorough description of the API, have a look at its documentation.

As a Collaborator submitting a new Model

For multiple inputs, please create a configuration for your model according to the example configuration. The format
key has to be present at the input level and must be equal to application/json as all input files will be passed
in a json to the API.

1.4. Modelhub IO Configuration 9

https://modelhub.readthedocs.io/en/latest/modelhubapi.html
https://github.com/modelhub-ai/modelhub/blob/master/examples/example_config_single_input.json
https://github.com/modelhub-ai/modelhub/blob/master/config_schema.json
https://www.jsonschemavalidator.net
https://github.com/modelhub-ai/modelhub/issues
https://github.com/modelhub-ai/modelhub/issues
https://github.com/modelhub-ai/modelhub/blob/master/examples/example_input_file_multiple_inputs.json
https://modelhub.readthedocs.io/en/latest/modelhubapi.html
https://github.com/modelhub-ai/modelhub/blob/master/examples/example_config_multiple_inputs.json

modelhub Documentation, Release 0.4.0

The other keys stand for one input file each and must contain a valid format (e.g. application/dicom) and
dimensions. You can additionally add a description for the input.

Populate the rest of the configuration file as stated in the contribution guide and the schema. Validate your config
file against our config schema with a JSON validator, e.g. this one. To access the files passed to your model in the
infer function, use the keys you specified in the configuration and in the input json file. For example, suppose
you have an input with key t1: You can access the path the the file in infer by using the passed dictionary:
input["t1"]["fileurl"]. This way you can always be sure that you are accessing the right file. HINT You can
implement additional classes for the loading of your images by adding your own class that extends the ImageLoader
class and add it to the chain of responsibility for loading the images. One good example is the lfb-rwth-brats model.

Additionally, mismatches between the config file and the input file the user passes to the API are automatically checked
before the input is passed to your model.

HINT Check out existing models with multiple inputs to see how they implemented the input handling of multiple
inputs, for example one of the BraTS models, e.g. lfb-rwth-brats.

1.5 Modelhub APIs

Documentation of the Modelhub REST API and Python API

1.5.1 REST API

The REST API is the main interface to a model packaged with the Modelhub framework. The REST API of a running
model can be reached under http://<ip of model>:<port>/api/<call>. For example http://localhost:80/api/
get_config to retrieve a JSON string with the model configuration.

The REST API is automatically instantiated when you start a model via python start.py <your model
name>. See the following documentation of the ModelHubRESTAPI class for a documentation of all available
functions.

REST API Class

class modelhubapi.restapi.ModelHubRESTAPI(model, contrib_src_dir)

get_config()
GET method

Returns Model configuration dictionary.

Return type application/json

get_legal()
GET method

Returns

All of modelhub’s, the model’s, and the sample data’s legal documents as dictionary. If one
(or more) of the legal files don’t exist, the error will be logged with the corresponding key.
Dictionary keys are:

• modelhub_license

• modelhub_acknowledgements

• model_license

10 Chapter 1. Contents:

https://github.com/modelhub-ai/modelhub/blob/master/config_schema.json
https://www.jsonschemavalidator.net
https://github.com/modelhub-ai/lfb-rwth-brats
https://github.com/modelhub-ai/lfb-rwth-brats

modelhub Documentation, Release 0.4.0

• sample_data_license

Return type application/json

get_model_io()
GET method

Returns The model’s input/output sizes and types as dictionary. Convenience function, as this
is a subset of what get_config() returns

Return type application/json

get_model_files()
GET method

Returns The trained deep learning model in its native format and all its asscociated files in a
single zip folder.

Return type application/zip

get_samples()
GET method

Returns List of URLs to all sample files associated with the model.

Return type application/json

predict()
GET/POST method

Returns Prediction result on input data. Return type/format as specified in the model configura-
tion (see get_model_io()), and wrapped in json. In case of an error, returns a dictionary
with error info.

Return type application/json

GET method

Parameters fileurl – URL to input data for prediciton. Input type must match specification
in the model configuration (see get_model_io()) URL must not contain any arguments
and should end with the file extension.

GET Example: :code: curl -X GET http://localhost:80/api/predict?fileurl=<URL_OF_FILE>

POST method

Parameters file – Input file with data for prediction. Input type must match specification in
the model configuration (see get_model_io())

POST Example: :code: curl -i -X POST -F file=@<PATH_TO_FILE> ‘http://localhost:80/api/predict

predict_sample()
GET method

Performs prediction on sample data.

Note: Currently you cannot use predict() for inference on sample data hosted under the same IP as
the model API. This function is a temporary workaround. To be removed in the future.

Returns Prediciton result on input data. Return type as specified in the model configuration (see
get_model_io()), and wrapped in json. In case of an error, returns a dictionary with
error info.

1.5. Modelhub APIs 11

modelhub Documentation, Release 0.4.0

Return type application/json

Parameters filename – File name of the sample data. No folders or URLs.

1.5.2 Python API

The Python API is a convenience interface to a model when you have direct access to the modelhub runtime environ-
ment, i.e. when you are inside the Docker running the model. This is, for example, the case if you work with the
sandbox Jupyter notebook provided with the model you are running.

When you are working inside the Docker running a model, you can import the Modelhub Python API via from
modelapi import model. This is a convenience import, which implicitly takes care of initializing the
ModelHubAPI with the model in the current Docker. You would then call the API (e.g. to get the model config) like
this configuration = model.get_config().

Python API Class

class modelhubapi.pythonapi.ModelHubAPI(model, contrib_src_dir)
Generic interface to access a model.

get_config()

Returns Model configuration.

Return type dict

get_legal()

Returns

All of modelhub’s, the model’s, and the sample data’s legal documents as dictionary. If one
(or more) of the legal files don’t exist, the error will be logged with the corresponding key.
Dictionary keys are:

• modelhub_license

• modelhub_acknowledgements

• model_license

• sample_data_license

Return type dict

get_model_io()

Returns The model’s input/output sizes and types as dictionary. Convenience function, as this
is a subset of what get_config() returns

Return type dict

get_samples()

Returns Folder and file names of sample data bundled with this model. The diconary key
“folder” holds the absolute path to the sample data folder in the model container. The key
“files” contains a list of all file names in that folder. Join these together to get the full path to
the sample files.

Return type dict

predict(input_file_path, numpyToFile=True, url_root=”)
Preforms the model’s inference on the given input.

12 Chapter 1. Contents:

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict

modelhub Documentation, Release 0.4.0

Parameters

• input_file_path (str or dict) – Path to input file to run inference on. Either a
direct input file or a json containing paths to all input files needed for the model to predict.
The appropriate structure for the json can be found in the documentation. If used directly,
you can also pass a dict with the keys.

• numpyToFile (bool) – Only effective if prediction is a numpy array. Indicates if
numpy outputs should be saved and a path to it is returned. If false, a json-serializable
list representation of the numpy array is returned instead. List representations is very slow
with large numpy arrays.

• url_root (str) – Url root added by the rest api.

Returns Prediction result on input data. Return type/foramt as specified in the model configura-
tion (see get_model_io()). In case of an error, returns a dictionary with error info.

Return type dict, list, or numpy array

1.6 Modelhub Library

Overview of the classes of the Modelhub library.

1.6.1 Model

class modelhublib.model.ModelBase
Abstract base class for contributer models. Currently this is merely an interface definition that all contributer
implemented models have to follow.

infer(input)
Abstract method. Overwrite this method to implement the inference of a model.

Parameters input (str) – Input file name.

Returns Converted inference results into format as defined in the model configuration. Usually
should return the result of <YourImageProcessor>.computeOutput

1.6.2 Pre- and Postprocessing

class modelhublib.processor.ImageProcessorBase(config)
Abstract base class for image pre- and postprocessing, thus handeling all data processing before and after the
inference.

Several methods of this class have to be implemented in a contributed model. Follow the “Contribute Your
Model to Modelhub” guide for detailed instructions.

An image processor handles:

1. Loading of the input image(s).

2. Converting the loaded images to a numpy array

3. Preprocessing the image data (either on the image object or on the numpy array) After this step the data
should be prepared to be directly feed to the inference step.

4. Processing the inference result and convert it to the expected output format.

1.6. Modelhub Library 13

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

modelhub Documentation, Release 0.4.0

This class already provides loading and conversion of images using PIL and SimpleITK. If you need to support
image formats which are not covered by those two, you should implement an additional ImageLoader and
ImageConverter. If you do so, you will also need to overwrite the constructor (__init__) to instantiate your
loader and converter and include them in the chain of responsibility. Best practice would be to call the original
constructor from your derived class and then change what you need to change.

Parameters config (dict) – Model configuration (loaded from model’s config.json)

loadAndPreprocess(input, id=None)
Loads input, preprocesses it and returns a numpy array appropriate to feed into the inference model (4
dimensions: [batchsize, z/color, height, width]).

There should be no need to overwrite this method in a derived class! Rather overwrite the individual
preprocessing steps used by this method!

Parameters

• input (str) – Name of the input file to be loaded

• id (str or None) – ID of the input when handling multiple inputs

Returns numpy array appropriate to feed into the inference model (4 dimensions: [batchsize,
z/color, height, width])

computeOutput(inferenceResults)
Abstract method. Overwrite this method to define how to postprocess the inference results computed by
the model into a proper output as defined in the model configuration file.

Parameters inferenceResults – Results of the inference as computed by the model.

Returns Converted inference results into format as defined in the model configuration.

_load(input, id=None)
Performs the actual loading of the image.

There should be no need to overwrite this method in a derived class! Rather implement an additional
ImageLoader to support further image formats. See also documentation of ImageProcessorBase
above.

Parameters

• input (str) – Name of the input file to be loaded

• id (str or None) – ID of the input when handling multiple inputs

Returns Image object which type will be the native image object type of the library/handler used
for loading (default implementation uses PIL or SimpleITK). Hence it might not always be
the same.

_preprocessBeforeConversionToNumpy(image)
Perform preprocessing on the loaded image object (see _load()).

Overwrite this to implement image preprocessing using the loaded image object. If not overwritten, just
returns the image object unchanged.

When overwriting this, make sure to handle the possible types appropriately and throw an IOException if
you cannot preprocess a certain type.

Parameters image (type = return of _load()) – Loaded image object

Returns Image object which must be of the same type as input image object.

_convertToNumpy(image)
Converts the image object into a corresponding numpy array with 4 dimensions: [batchsize, z/color, height,
width].

14 Chapter 1. Contents:

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None

modelhub Documentation, Release 0.4.0

There should be no need to overwrite this method in a derived class! Rather implement an addi-
tional ImageConverter to support further image format conversions. See also documentation of
ImageProcessorBase above.

Parameters image – (type = return of _preprocessBeforeConversionToNumpy()):
Loaded and preproceesed image object.

Returns Representation of the input image as numpy array with 4 dimensions [batchsize,
z/color, height, width].

_preprocessAfterConversionToNumpy(npArr)
Perform preprocessing on the numpy array (the result of _convertToNumpy()).

Overwrite this to implement preprocessing on the converted numpy array. If not overwritten, just returns
the input array unchanged.

Parameters npArr (numpy array) – input data after conversion by
_convertToNumpy()

Returns Preprocessed numpy array with 4 dimensions [batchsize, z/color, height, width].

1.6.3 Image Loading

class modelhublib.imageloaders.imageLoader.ImageLoader(config, successor=None)
Abstract base class for image loaders, following chain of responsibility design pattern. For each image loader
you should implement a corresponding image converter using ImageConverter as base class.

Parameters sucessor (ImageLoader) – Next loader in chain to attempt loading the image if
this one fails.

setSuccessor(successor)
Setting the next loader in chain of responsibility.

Parameters sucessor (ImageLoader) – Next loader in chain to attempt loading the image
if this one fails.

load(input, id=None)
Tries to load input and on fail forwards load request to next handler until success or final fail.

There should be no need to overwrite this. Overwrite only _load() to load the image type you want to
support and let this function as it is to handle the chain of responsibility and errors.

Parameters input (str) – Name of the input file to be loaded.

Returns Image object as loaded by _load() or a successor load handler.

Raises IOError if input could not be loaded by any load handler in the chain.

_load(input)
Abstract method. Overwrite to implement loading of the input format you want to support.

When overwriting this, make sure to raise IOError if input cannot be loaded.

Parameters input (str) – Name of the input file to be loaded.

Returns Should return image object in the native format of the library using to load it.

_checkConfigCompliance(image, id=None)
Checks if image complies with configuration.

There should be no need to overwrite this. Overwrite only _getImageDimensions() to supply the
image dims to check against config.

Parameters image – Image object as loaded by _load()

1.6. Modelhub Library 15

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

modelhub Documentation, Release 0.4.0

Raises IOError if image dimensions do not comply with configuration.

_getImageDimensions(image)
Abstract method. Should return the dimensions of the loaded image, should be a 3 tuple (z, y, x).

Overwrite this in an implementation of this interface. This function is used by
_checkConfigCompliance().

Parameters image – Image object as loaded by _load()

Returns Should return image dimensions of the image object.

class modelhublib.imageloaders.pilImageLoader.PilImageLoader(config, succes-
sor=None)

Bases: modelhublib.imageloaders.imageLoader.ImageLoader

Loads common 2d image formats (png, jpg, . . .) using Pillow (PIL).

_load(input)
Loads input using PIL.

Parameters input (str) – Name of the input file to be loaded

Returns PIL.Image object

_getImageDimensions(image)

Parameters image (PIL.Image) – Image as loaded by _load()

Returns Image dimensions from PIL image object

class modelhublib.imageloaders.sitkImageLoader.SitkImageLoader(config, succes-
sor=None)

Bases: modelhublib.imageloaders.imageLoader.ImageLoader

Loads image formats supported by SimpleITK

_load(input)
Loads input using SimpleITK.

Parameters input (str) – Name of the input file to be loaded

Returns SimpleITK.Image object

_getImageDimensions(image)

Parameters image (SimpleITK.Image) – Image as loaded by _load()

Returns Image dimensions from SimpleITK image object

1.6.4 Image Conversion

class modelhublib.imageconverters.imageConverter.ImageConverter(successor=None)
Abstract base class for image converters, following chain of responsibility design pattern. For each image loader
derived from ImageLoader you should implement a corresponding image converter using this as base class.

Parameters sucessor (ImageConverter) – Next converter in chain to attempt loading the
image if this one fails.

setSuccessor(successor)
Setting the next converter in chain of responsibility.

Parameters sucessor (ImageConverter) – Next converter in chain to attempt loading the
image if this one fails.

16 Chapter 1. Contents:

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

modelhub Documentation, Release 0.4.0

convert(image)
Tries to convert image to numpy and on fail forwards convert request to next handler until sucess or final
fail.

There should be no need to overwrite this. Overwrite only _convert() to convert the image type you
want to support and let this function as it is to handle the chain of responsibility and errors.

Parameters image – Image object to convert.

Returns Numpy array as converted by _convert() or a successor converter.

Raises IOError if image could not be converted by any converter in the chain.

_convert(image)
Abstract method. Overwrite to implement image conversion to numpy array from the image object type
you want to support.

When overwriting this, make sure to raise IOError if image cannot be converted.

Parameters image – Image object to convert.

Returns Should return image object converted to numpy array with 4 dimensions [batchsize,
z/color, height, width]

class modelhublib.imageconverters.pilToNumpyConverter.PilToNumpyConverter(successor=None)
Bases: modelhublib.imageconverters.imageConverter.ImageConverter

Converts PIL.Image objects to Numpy

_convert(image)

Parameters image (PIL.Image) – Image object to convert.

Returns Input image object converted to numpy array with 4 dimensions [batchsize, z/color,
height, width]

Raises IOError if input is not of type PIL.Image or cannot be converted for other reasons.

class modelhublib.imageconverters.sitkToNumpyConverter.SitkToNumpyConverter(successor=None)
Bases: modelhublib.imageconverters.imageConverter.ImageConverter

Converts SimpltITK.Image objects to Numpy

_convert(image)

Parameters image (SimpleITK.Image) – Image object to convert.

Returns Input image object converted to numpy array with 4 dimensions [batchsize, z/color,
height, width]

Raises IOError if input is not of type SimpleITK.Image or cannot be converted for other reasons.

1.6. Modelhub Library 17

modelhub Documentation, Release 0.4.0

18 Chapter 1. Contents:

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

19

modelhub Documentation, Release 0.4.0

20 Chapter 2. Indices and tables

Python Module Index

m
modelhubapi.pythonapi, 12
modelhubapi.restapi, 10
modelhublib.imageconverters.imageConverter,

16
modelhublib.imageconverters.pilToNumpyConverter,

17
modelhublib.imageconverters.sitkToNumpyConverter,

17
modelhublib.imageloaders.imageLoader,

15
modelhublib.imageloaders.pilImageLoader,

16
modelhublib.imageloaders.sitkImageLoader,

16
modelhublib.model, 13
modelhublib.processor, 13

21

modelhub Documentation, Release 0.4.0

22 Python Module Index

Index

Symbols
_checkConfigCompliance() (model-

hublib.imageloaders.imageLoader.ImageLoader
method), 15

_convert() (model-
hublib.imageconverters.imageConverter.ImageConverter
method), 17

_convert() (model-
hublib.imageconverters.pilToNumpyConverter.PilToNumpyConverter
method), 17

_convert() (model-
hublib.imageconverters.sitkToNumpyConverter.SitkToNumpyConverter
method), 17

_convertToNumpy() (model-
hublib.processor.ImageProcessorBase method),
14

_getImageDimensions() (model-
hublib.imageloaders.imageLoader.ImageLoader
method), 16

_getImageDimensions() (model-
hublib.imageloaders.pilImageLoader.PilImageLoader
method), 16

_getImageDimensions() (model-
hublib.imageloaders.sitkImageLoader.SitkImageLoader
method), 16

_load() (modelhublib.imageloaders.imageLoader.ImageLoader
method), 15

_load() (modelhublib.imageloaders.pilImageLoader.PilImageLoader
method), 16

_load() (modelhublib.imageloaders.sitkImageLoader.SitkImageLoader
method), 16

_load() (modelhublib.processor.ImageProcessorBase
method), 14

_preprocessAfterConversionToNumpy()
(modelhublib.processor.ImageProcessorBase
method), 15

_preprocessBeforeConversionToNumpy()
(modelhublib.processor.ImageProcessorBase
method), 14

C
computeOutput() (model-

hublib.processor.ImageProcessorBase method),
14

convert() (modelhublib.imageconverters.imageConverter.ImageConverter
method), 16

G
get_config() (model-

hubapi.pythonapi.ModelHubAPI method),
12

get_config() (model-
hubapi.restapi.ModelHubRESTAPI method),
10

get_legal() (modelhubapi.pythonapi.ModelHubAPI
method), 12

get_legal() (model-
hubapi.restapi.ModelHubRESTAPI method),
10

get_model_files() (model-
hubapi.restapi.ModelHubRESTAPI method),
11

get_model_io() (model-
hubapi.pythonapi.ModelHubAPI method),
12

get_model_io() (model-
hubapi.restapi.ModelHubRESTAPI method),
11

get_samples() (model-
hubapi.pythonapi.ModelHubAPI method),
12

get_samples() (model-
hubapi.restapi.ModelHubRESTAPI method),
11

I
ImageConverter (class in model-

hublib.imageconverters.imageConverter),
16

23

modelhub Documentation, Release 0.4.0

ImageLoader (class in model-
hublib.imageloaders.imageLoader), 15

ImageProcessorBase (class in model-
hublib.processor), 13

infer() (modelhublib.model.ModelBase method), 13

L
load() (modelhublib.imageloaders.imageLoader.ImageLoader

method), 15
loadAndPreprocess() (model-

hublib.processor.ImageProcessorBase method),
14

M
ModelBase (class in modelhublib.model), 13
ModelHubAPI (class in modelhubapi.pythonapi), 12
modelhubapi.pythonapi (module), 12
modelhubapi.restapi (module), 10
modelhublib.imageconverters.imageConverter

(module), 16
modelhublib.imageconverters.pilToNumpyConverter

(module), 17
modelhublib.imageconverters.sitkToNumpyConverter

(module), 17
modelhublib.imageloaders.imageLoader

(module), 15
modelhublib.imageloaders.pilImageLoader

(module), 16
modelhublib.imageloaders.sitkImageLoader

(module), 16
modelhublib.model (module), 13
modelhublib.processor (module), 13
ModelHubRESTAPI (class in modelhubapi.restapi), 10

P
PilImageLoader (class in model-

hublib.imageloaders.pilImageLoader), 16
PilToNumpyConverter (class in model-

hublib.imageconverters.pilToNumpyConverter),
17

predict() (modelhubapi.pythonapi.ModelHubAPI
method), 12

predict() (modelhubapi.restapi.ModelHubRESTAPI
method), 11

predict_sample() (model-
hubapi.restapi.ModelHubRESTAPI method),
11

S
setSuccessor() (model-

hublib.imageconverters.imageConverter.ImageConverter
method), 16

setSuccessor() (model-
hublib.imageloaders.imageLoader.ImageLoader
method), 15

SitkImageLoader (class in model-
hublib.imageloaders.sitkImageLoader), 16

SitkToNumpyConverter (class in model-
hublib.imageconverters.sitkToNumpyConverter),
17

24 Index

	Contents:
	Quick Start
	Overview
	Contribute Your Model to Modelhub
	Modelhub IO Configuration
	Modelhub APIs
	Modelhub Library

	Indices and tables
	Python Module Index
	Index

